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We investigate theoretically confined electron-confined phonon scattering rates in three-layered
planar wurtzite AlN/GaN/AlN heterostructures with free-surface boundary conditions. The
thicknesses of the core and cladding layers are chosen to be a few nanometers to ensure phonon and
electron spectrum modification due to spatial confinement. We have considered electron-phonon
interactions via deformation and piezoelectric potentials. The scattering rates are calculated for both
intra- and intersubband transitions of confined electrons. The influence of the built-in electric field,
characteristic for GaN/AlN interfaces, on polarization and intensity of the electron-acoustic phonon
interaction in heterostructures is discussed. Specific features of the deformation and piezoelectric
scattering of electrons in wurtzite three-layered heterostructures and their differences from the
scattering in homogenous slabs have been established. It has been shown that it is possible to tune
the strength of the electron-phonon interaction in a desired way by varying the core and cladding
layers thicknesses. The obtained results can be used for optimization of GaN-based heterostructures
for electronic and spintronic applications. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1710705#

I. INTRODUCTION

Spatial confinement of acoustic phonons in nanoscale
structures with acoustic impedance mismatch at the bound-
aries can strongly affect the vibrational spectrum and modify
substantially the electron-phonon interaction in comparison
with bulk.1 Nevertheless, in many cases, a three-dimensional
bulk phonon approximation is still used to describe the
electron-phonon interaction in hetero- and nanostructures. In
this approach the Hamiltonian for the electron-phonon inter-
action takes into account the size quantization of the elec-
tronic states while using bulk phonon energy spectrum. The
latter simplifies the theoretical treatment, since confined
acoustic phonon spectra can be relatively easily found only
for homogeneous structures of simple geometry, such as
slabs, cylindrical, and rectangular nanowires,1–3 or
superlattices.4 Several analytical solutions for confined pho-
non spectra in structures of simple geometry can be adopted
from acoustics.5 At the same time, the treatment that disre-
gards phonon spectrum modification breaks down when the
structure size becomes too small, e.g., characteristic feature
size of the structure is much smaller than the phonon mean
free path~MFP! at a given temperature, particularly when the
elastic constant discontinuity at the nanostructure boundary
is large. In this case, both the confinement of electron states
and acoustic phonons should be taken into account while
calculating the scattering rates.

Most of work on phonon confinement in thin films and
nanowires has been done for anisotropic medium or materi-
als with cubic lattice structure. The confined acoustic
phonons in thin films~slabs! and nanowires are classified
according to their spatial symmetries into shear, dilatational,
and flexural polarizations.1–3 Folded acoustic phonons in lay-
ered media have been theoretically predicted and described
by Rytov.4 The folded acoustic phonons have been later ob-
served experimentally in quantum well superlattices.6 More
recently, acoustic phonon spectra have been calculated for
regimented arrays of quantum dots from the anisotropic elas-
ticity equation with actual elastic constants for the zinc
blende dot and barrier materials.7 The Hamiltonians of con-
fined electron-confined phonon interaction in free standing
slabs, cylindrical and rectangular quantum wires, and spheri-
cal quantum dots have been derived in Refs. 8–10. The ef-
fect of magnetic field on confined electron-confined phonon
interaction in rectangular quantum wires is described in
Ref. 11.

From the technological point of view, achieving acoustic
phonon confinement is currently a more challenging task
than achieving electron confinement. The former requires
hetero- or nanostructures made of elastically dissimilar ma-
terials characterized by the large acoustic impedance mis-
match or fabrication of free-standing nanostructures. Com-
plete phonon confinement, similar to electron confinement in
a quantum well with infinite potential barriers, takes place in
free-standing nanostructures. Achieving strong phonon con-
finement and spectrum quantization is important for control-
ling acoustic phonon transport, e.g.,phonon engineering,
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which may lead to nanoscale device applications. There have
been some progress in this direction resulting in reports of
fabrication and characterization of free-standing, or nearly
free-standing, quantum wells, wires, and dots.12–14 Very re-
cently, fabrication and measurements of thermal conductivity
in single crystalline free-surface Si nanowires with diameter
as small as 22 nm have been reported by Liet al.15 An ob-
served strong decrease of thermal conductivity beyond the
boundary scattering limit has been attributed to the phonon
confinement effect, e.g., acoustic phonon modification, pre-
dicted for such structures in Ref. 16.

Heterostructures made of wurtzite GaN/AlN are very
promising for electronic and optical applications due to a
large direct band gap in GaN, high-temperature and high-
field stability. GaN-based transistors have also demonstrated
a capability for high-frequency operation with the noise lev-
els low enough for microwave applications.17,18 An impor-
tant feature of GaN/AlN hetero- and nanostructures is the
existence of a built-in electric field.19 Spontaneous polariza-
tion, which stems from the lack of inversion symmetry, is
especially large in GaN and AlN.19,20 Owing to the lattice
mismatch between GaN and AlN, the deformation appears in
thin layers within GaN/AlN interface leading to the strain-
induced polarization.19,20 The built-in electric field, induced
by the polarization, can reach values on the order of several
MeV/cm.20–22 It strongly affects the electron~hole! states in
two-dimensional electron gas~2DEG! formed at GaN/AlN
interface as well as 2DEG mobility.23–25 In addition, the
built-in electric field strongly affects light absorption and
photoluminescence in GaN/AlN heterostructures.26,27 Calcu-
lation of the intersubband and intrasubband scattering rates
in GaN/AlGaN quantum wells with optical phonons partici-
pation was reported in Ref. 28. The distribution of built-in
field in GaN/AlN quantum dots, which is drastically different
from that in planar GaN/AlN heterostructures, has been in-
vestigated by Andreev and O’Reily29,30 and Fonoberov and
Balandin.31,32

In this work we present theoretical investigation of con-
fined electron-confined phonon interaction in wurtzite AlN/
GaN/AlN heterostructures. The three-layered heterostructure
is chosen as a prototype of a generic thin film~quantum well!
embedded within a barrier material. The considered values of
the layer thickness are well below the acoustic phonon MFP
at a given temperature to ensure phonon spectrum modifica-
tion.

The remainder of the article is organized as follows. In
the Sec. II, we describe normal acoustic phonon modes in a
free-standing three-layered heterostructure. In Sec. III, the
eigenmodes and eigenfunctions for electron confined within
the core GaN layer are obtained. In Sec. IV, the Hamiltonians
for confined electron interaction with deformation and piezo-
electric potential of normal acoustic phonon modes in the
considered heterostructure are derived. In Sec. V, we derive
formulas for confined electron-confined phonon scattering
rate in three-layered free-surface heterostructure. Results of
the calculations of electron scattering rates via deformation
and piezoelectric potentials for AlN/GaN/AlN heterostruc-
ture are presented in Sec. VI. Conclusions are given in
Sec. VII.

II. CONFINED ACOUSTIC PHONON MODES
IN A THREE-LAYERED HETEROSTRUCTURE

A schematic view of the considered three-layered hetero-
structure and basic designations are shown in the insets to
Fig. 1. AxesX1 and X2 in the Cartesian coordinate system
are in the plane of the layers while axisX3 is perpendicular
to the layer surfaces and is parallel to the hexagonal refer-
ence axisc in wurtzite lattice. The layers thicknesses are
denoted bydi ( i 51,2,3). The structure is symmetric,d1

5d3 , and its total thicknessd is given asd52d11d2 . The
numeric calculations are performed for GaN slabs withd2

5(2 nm,10 nm) and for the three-layered AlN/GaN/AlN het-
erostructures with dimensions~4 nm/2 nm/4 nm! and ~2
nm/6 nm/2 nm!. For the convenience of further discussion,
we refer to such heterostructures as type A~thick barrier-thin
core! and type B~thin barrier-thick core! heterostructures,
respectively.

Details of the calculation of normal phonon modes in
AlN/GaN/AlN heterostructures are described by us
elsewhere.33 The confined phonon spectra for types A and B
heterostructures required for this work have been computed
using the approach of Ref. 33 and the elastic constants values
from Ref. 34. The normal modes with displacement vectorU
parallel to the layers do not interact with charge carriers.
Therefore, these modes will not be considered in the present
work. Following the notations adopted in Pokatilovet al.33

the two other types of normal phonon modes are denoted as
SA and AS polarizations. In the case of a slab, the SA modes
correspond to dilatational modes while AS modes correspond
to flexural modes.1,8 The displacement vectorsU for SA and
AS modes lie in the (X3 ,q) plane, whereq is a wave vector
of normal vibration. The dispersion relations for type A het-
erostructure are shown in Fig. 1 for both SA~a! and AS~b!
polarizations. One can see from these figures that only zero
SA mode and zero AS mode are bulk-like. All the other
modes are quantized and quasioptic in nature, e.g.,v(q
50)Þ0.

III. CONFINED ELECTRON STATES

We limit our consideration to wurtzite GaN and AlN
compounds. Since wurtzite lattice lacks inversion symmetry,
the heterostructure layers are spontaneously polarized. The
vector of spontaneous polarizationPsp is oriented along thec
axis. Due to the lattice constanta mismatch, a(GaN)
.a(AlN) by 2.5%, in the type A heterostructure the core

FIG. 1. Phonon energy as the function of the phonon wave vector for type
A ~thick barrier-thin core! heterostructure plotted for~a! SA and ~b! AS
polarizations.
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GaN layer is uniformly squeezed in the plane (X1 ,X2),
while in the type B heterostructure the cladding AlN layers
are stretched in the same plane. As shown in Ref. 19 such
deformation does not relax for the layer thickness
d(GaN,AlN),3 nm and induces polarizationPst. The total
polarization includes two components, e.g.,Ptot5Psp1Pst. If
the GaN core layer is relaxed~not under strain! then Ptot

5Psp. Theoretical estimates for the build-in electrostatic field
F induced by total polarizationPtot give the value of about
106 V/cm.20

The Schro¨dinger equation for the transverse electron
motion in the considered three-layered heterostructure can be
written as

F2
\2

2

]

]x3

1

mi~x3!

]

]x3
1Vb~x3!1Vbuilt-in~x3!Gcn~x3!

5e'ncn~x3!, ~1!

e'n5E'n2
\2k2

2

1

m',n
, ~2!

1

m',n
5E

2d/2

d/2

ucn~x3!u2
1

m'~x3!
dx3 . ~3!

Here\ is the Plank’s constant,mi(x3) is the effective mass
of an electron along the reference axisc andm'(x3) is the
effective mass of an electron in the (X1 ,X2)-plane,Vb(x3) is
the barrier potential andVbuilt-in(x3)52eF3

wx3 , wheree is
the electron charge,F3

w is the component of the built-in elec-
trostatic field alongX3 axis in the quantum well. Equation
~2! determines the energy of electron level witn quantum
numbern, cn—is the wave function of the electron state
witn a quantum numbern.

In Fig. 2 the flatband (Vbuilt-in50; FB! potential well is
depicted by the solid line while the triangular potential well
~TB!, which corresponds to the built-in electric field intensity

F3
w54 MV/cm, is shown by the dashed line. This value of

the built-in field, chosen for numeric calculations, has been
adopted from Ref. 26. The energy levels~bottom of the cor-
responding subband! for the ground and first excited sub-
bands in the FB and TB wells are presented in Fig. 2 with the
solid and dashed lines, respectively. One can see that in the
case of FB the wave functioncn51(x3) is distributed uni-
formly over the layer thickness while in the case of TB the
wave functioncn51(x3) becomes strongly asymmetric and
attains its maximum approximately in the distance equal to
one third of the core layer thickness from the interface. This
feature of the wave function results in substantial modifica-
tion of the confined electron-confined phonon interaction in
the case of TB as compared with the case of FB.

IV. CONFINED ELECTRON-CONFINED ACOUSTIC
PHONON INTERACTION

In this section we derive the Hamiltonian for the con-
fined electron-confined phonon interaction in a three-layered
piezoelectric heterostructure. The expansion of the displace-
ment vector over the normal modes has the form

U~x1 ,x2 ,x3!5(
a,s

Us
~a!~r ,x3 ,q!, r ~x1 ,x2!, ~4!

where indexa5~SA,AS! indicates the polarization type and
index s50,1,2,...N is the quantum number of a normal pho-
non mode. The displacement vector for the (a,s,q)-normal
mode is given by the equation

Us
~a!~r ,x3 ,q!5

1

AL1L2

As
~a!~q,t !ws

a~q,x3!eiqr, ~5!

whereAs
(a) is the oscillation amplitude andws

a(q,x3) is the
polarization vector for the (a,s,q)-normal mode. The polar-
ization vectorws

a(q,x3) in its turn satisfies the following
orthonormal conditions:

E
2d/2

d/2

ws
~a!~q,x3!r~x3!ws8

~a8!* ~q,x3!dx3

5r~a!~q!dss8daa8 , ~6!

wheredkk850(kÞk8) anddkk851(k5k8).
The Hamiltonians for interaction of an electron with

(a,s,q) normal acoustic phonon mode via the deformation
potentialĤe-ph,s

(a),d and piezoelectric potentialĤe-ph,s
(a),p are given

as

Ĥe-ph,s
~a!,b 5 iA \

2L1L2rs
~a!~q!vs

~a!~q!
Fs

~a!,b~x3 ,q!

3@bs
~a!~q!1b̂s

†~a!~2q!#eiqr, ~7!

whereb5(d,p), b̂s
(a)(q) is the annihilation operator,b̂s

†(a)

3(q) is the generation operator of a phonon in (a,s,q)
mode andFs

(a),b are the potential functions for deformation
and piezoelectric scattering interactions. Functionsrs

(a)(q)
are computed according to the orthonormal conditions of Eq.
~6!. The potential function for the deformation interaction is
defined as

FIG. 2. Electron energy levels and electron wave functions~the ground state
and the first excited states! calculated for the potential well without built-in
electric potential, e.g., FB, indicated by the solid lines, and for the potential
well with the built-in electric field, e.g., TB indicated by the dashed lines.
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Fs
~a!,d~x3 ,q!5a2cqws

~a!~x3 ,q!2a1c

dw3,s
~a!~x3 ,q!

dx3
, ~8!

wherea1c anda2c are the deformation constants for the con-
duction band. Numerical values of these constants were se-
lected in line with those reported in Ref. 34. One can see
from Eq. ~8! that the symmetry of functionFs

(a),d coincides
with the symmetry of the polarization vector component
w1,s

(a) . Thus, the even deformation potential corresponds to
normal SA mode and vice versa.

The piezoelectric potential function induced by (a,s,q)
acoustic phonon mode is found from the solution of the Pois-
son equation given by

e~x3!Fd2Fs
~a!,p~x3 ,q!

dx3
2

2q2Fs
~a!,p~x3 ,q!G

1
de~x3!

dx3

dFs
~a!,p~x3 ,q!

dx3
5

e

e0

d@e33~x3!w3,s
~a!~x3 ,q!#

dx3

2
e

2e0
e15~x3!q2w3,s

~a!~x3 ,q!2
e

e0
qFe15~x3!

2

2e31~x3!G dw1,s
~a!~x3 ,q!

dx3
2

e

e0
q

de31~x3!

dx3
w1,s

~a!~x3 ,q!,

~9!

wheree0 is the permittivity of free space,ei ,k ( i 51,2,3; k
51,...,6) are the piezoelectric modules for the hexagonal
crystal. Numerical values ofe31(x3), e33(x3) are taken from
Ref. 34, e51(x3) are from Ref. 20 and the static dielectric
constante(x3) is from Ref. 35. Since the out-of-structure
piezoelectric polarizationPout

p 50, the Maxwell boundary
conditions for the piezoelectric potential function
Fs

(a),p(x3 ,q) at the outside surface of the structure acquire
the form

2e0e~x3!FdFs
~a!,p~x3 ,q!

dx3
G

out

52e0e~x3!FdFs
~a!,p~x3 ,q!

dx3
G

in

2@eP3,s
~a!,p# in ,

~10!

x52
d

2
60~ ‘ ‘ 1 ’ ’ in; ‘ ‘ 2 ’ ’ out!

or

x51
d

2
60~ ‘ ‘ 1 ’ ’ out, ‘ ‘ 2 ’ ’ in !,

where P3,s
(a),p(x3 ,q)5e31(x3)qw1,s

(a)(x3 ,q)2e33(x3)dw3,s
(a)

3(x3 ,q)/dx3 . It follows from Eq. ~9! that the symmetry of
function Fs

(a),p is the same as the symmetry of the polariza-
tion vector componentw3,s

(a) . As a result, the even piezoelec-
tric potential corresponds to normal AS mode and vice versa.

FunctionsFs50
(AS),p for a GaN slab (d52 nm) and for the

type A heterostructure (d510 nm) are shown in Fig. 3~a!.
Note that the functions for the GaN slab and AlN/GaN/AlN
heterostructure with equal thicknesses are similar. For small
phonon wave vectorsq the absolute value of the function in
the heterostructure withd510 nm and in the slab of the

same thickness is more than the absolute value of this func-
tion in the structure withd52 nm. This leads to the en-
hancement of piezoelectric interaction with increasing struc-
ture thickness for the electrons with relatively small
momentum, e.g., for nondegenerate electron gas at low tem-
peratures.

V. SCATTERING RATES

The quantum mechanical probability of the system tran-
sition from the initial statei to the final statef due to
electron-phonon interaction can be calculated according to
Fermi’s golden rule

t21~e i !5Wi→ f5
2p

h (
f

u, f uHe-phu i .u2d~e f2e i !,

~11!

where summation is performed over all finite states of a sys-
tem. Equation ~11! determines the number of electron-
phonon collisions per second, e.g., scattering rate, with
which the electron transfers from some initial statei with
energye i to the finite statef with energye f . Calculation of
the relaxation time using Eq.~11! allows one to compare the
intensities of electron-phonon interaction for different inter-
action mechanisms or, for the same mechanism, compare the
scattering rates in different structures.

For the remainder of the article we will assume that the
upper sign in the momentum conservation lawk85k6q cor-
responds to phonon absorption while the lower sign corre-
sponds to phonon emission. Taking into account this conser-

FIG. 3. ~a! Piezoelectric potential for the AS zero normal mode (s50) as a
function of the phonon wave vectorq and coordinatex3 shown for the slab
(0,x3,2 nm) and for the type A heterostructure (0,x3,10 nm). ~b! In-
tegrand functionGd,SA,s57(x3) of the scattering rate matrix element for the
deformation potential interaction in the GaN slab~10 nm! and type A het-
erostructure. Boundaries of the GaN heterostructure core layer are indicated
by two vertical dashed lines.
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vation law and, after integration over an angle in the
cylindrical coordinate system, one can rewrite Eq.~11! in the
following form:

tn,n8
21

~e!5
1

2p\2k
(

a,b,s
m',n8

3E
0

` FNs
~a!1

1

2
7

1

2Gdq

rs
~a!~q!vs

~a!~q!A12~D7!2

3F E
2d/2

d/2

Gn,n8
b,a,s

~q,x3!dx3G2

, ~12!

where Ns
(a) is the phonon equilibrium occupation number,

vs
(a) is the phonon frequency, and functionsD7 andGn,n8

b,a,s

are given as

~D7!5
m',n8

kq\2 Fen8
0

2en
01

\2k2

2 S 1

m',n8
2

1

m',n
D

1
\2q2

2m',n8
7\vs

~a!~q!G , ~13!

Gn,n8
b,a,s

~q,x3!5Fs
~a!,b~q,x3!cn8

* ~x3!cn~x3!. ~14!

Note that in Eq.~12!, n5n8 corresponds to intrasubband
transitions, andnÞn8 corresponds to intersubband transi-
tions. The electron size quantization energy in heterostruc-
tures with a thickness on the order of several nanometers, is
much larger than the electron thermal energy at room tem-
perature. In this case, one can assume that only one subband
(n51) is occupied, and intersubband transitions are possible
for the nonequilibrium system state, which can be created,
for example, by optical excitation.26,28

The functionGn51,n851
SA,s57,d (x3 ,q50.25 nm21), is depicted

in Fig. 3~b! for the GaN slab (d510 nm) and for the type A
heterostructure. In the slabs, the electron interacts mainly
with the lowest modes (s50,1,2),8 while in the heterostruc-
tures the electron interacts intensively with all modes (s
50,1,2,3...). In Fig. 3~b! one can see the strength of the
interaction between an electron in the ground state and sev-
enth normal acoustic SA mode.

VI. COMPARISON OF THE SCATTERING RATES AND
DISCUSSION

Calculated intrasubband scattering ratest21(e) in GaN
slab and heterostructures are presented in Figs. 4–6. In Figs.
4~a!–4~b! one can see the scattering rates in the GaN slab
with the thicknessd52 nm. The confined electron-confined
phonon scattering rates in types A and B heterostructures are
shown in Figs. 5~a!–5~b! and 6~a!–6~b!, respectively. One
can notice in these figures that the phonon absorption pro-
cessestabs

21(e) are described by the smooth functions due to
the fact that all phonon modes participate in the absorption
process, although with different contributions determined by
the value of the matrix element. The functional dependence
is different for the phonon emission processestem

21(e) where
the well-defined steps are clearly seen at energiesestep

5\vs
(a)(q50). This corresponds to the beginning of pho-

non emission when the phonon energy equals to the electron
energy. These characteristic steps distinguish the confined
electron-confined phonon scattering rates in heterostructures
from the scattering rates for free electrons interacting with
bulk phonons for which the relaxation rate is proportional to
the square root of electron energye, i.e., t21;(e)1/2. The
calculated scattering rates are also different from the con-
fined electron-bulk acoustic phonon scattering rates shown in
Fig. 4~a! with the dotted line ~phonon emission atT
5300 K; tabs

215tem
21). More discussion on the difference be-

tween electron-confined phonon and electron-bulk phonon
scattering rates in crystals of cubic structure can be found in

FIG. 4. Intrasubband electron scattering rate for SA normal modes as a
function of the electron energy in GaN slab (d52 nm) at three different
temperatures of 4.2, 77, and 300 K. Solid lines correspond to phonon emis-
sion and dashed lines correspond to phonon absorption. The results are
presented for the deformation potential interaction~a! and for the piezoelec-
tric field interaction~b!. For comparison, the bulk phonon emission is shown
with the dotted curve.

FIG. 5. Intrasubband electron scattering rate for SA normal modes as a
function of the electron energy in the type A heterostructure at two different
temperatures of 4.2 and 77 K. Solid lines correspond to phonon emission
and dashed lines correspond to phonon absorption. The results are presented
for the deformation potential interaction~a! and for the piezoelectric field
interaction~b!.

FIG. 6. Intrasubband electron scattering rate for SA and AS normal modes
as a function of the electron energy in the type B heterostructure at the
temperature of 77 K. Solid lines correspond to phonon emission and dashed
lines correspond to phonon absorption. The results presented for the defor-
mation potential interaction~a! and for the piezoelectric field interaction~b!.
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Refs. 1–3 and 8. One can also notice in Fig. 4 that since in
the ‘‘thin’’ GaN slab with d52 nm the phonon quantization
is stronger than in types A and in B heterostructures withd
510 nm~see Figs. 5 and 6!, the first steps in the thin slab are
shifted to higher energies.

The number of normal modes in the heterostructure can
be estimated asd/2c1c , where c1c is the lattice constant
(c1c50.51 nm for GaN!.34 It follows from this estimate that
two normal modes~bulk like s50 and quantizeds51) of
each polarizations~SA and AS! are in the thin GaN slab,
whereas ten normal modes of SA and AS polarizations are in
both types A and B heterostructures~including two modes
with s50, which are bulk like!. The distinctive feature of
scattering ratest21(e) in heterostructures is the involvement
of the higher phonon modes into the emission processes.
Figure 3~b! shows that higher phonon modes in heterostruc-
tures intensively interact with electrons due to confinement
of the electron in the heterostructure core layer. In the type B
heterostructure the electron wave function is shifted to the
heterostructure surface by the built-in electric field. There-
fore, the symmetry with respect to the central plane is bro-
ken. As a result, the electron deformation potential interac-
tion with AS modes and the electron piezoelectric interaction
with SA modes emerge, while the deformation potential in-
teraction with SA modes and the piezoelectric interaction
with AS modes become weaker. Note that in the type A het-
erostructure, the built-in electric field does not practically
influence the value oft21(e) because of the small potential
bias.

The dependence of the scattering rate on the nanostruc-
ture thickness@see Figs. 4~a! and 5~a!# is a manifestation of
the size quantization effect in electron-phonon interaction.
There is no such effect in bulk because of the increase in the
number of normal acoustic modes, which is proportional to
V ~whereV is the sample volume! and is compensated by the
decrease in their amplitudes;V21/2 while computing the
scattering ratet21. Analogously, in nanostructures the num-
ber of normal acoustic modes increases as;d and the am-
plitude of each modes decreases as;d21/2. At the same
time, the efficiency of the deformation potential interaction
of electrons with the higher normal acoustic phonon modes
in a thicker heterostructure is weakened~see Fig. 5!. As a
result, the scattering rate decreases with increasing thickness
d @compare Figs. 4~a! and 5~a!#.

The piezoelectric potential interaction is a long-distance
interaction. To estimate its dependence on the structure thick-
ness, we can write, using Eq.~9!, the following expression
uFp,du;duws

(a)u;d1/2. This general dependence can be
strongly modified by the change of the sign of the function
Fs

p(x3 ,q) for large values ofs and q. Comparing Fig. 4~b!
with Fig. 5~b! one can see that the increase of the structure
thickness leads to the enhancement of the piezoelectric inter-
action.

Optical excitation of electrons into the first exited sub-
band followed by relaxation to the ground state subband can
be characterized by the functiont21

21(e). This function is
shown in Fig. 7~a!. The reverse process, due to thermal ex-
citation, is described by the functiont12

21(e) @see Fig. 7~b!#.
The main contribution to these transitions comes from the

deformation potential interaction owing to the large value of
the electron momentum. The total relaxation rates, e.g.,
absorption and emission processes together,t21(abs1em)
are shown in Fig. 8~a!. The average total relaxation
rates t tot

21(T)5(a,b@t21(T)#(a),b obtained by averaging
of @t21(e)# (a),b using the Maxwell distribution for
non-degenerate electrons are presented in Fig. 8~b!. The
resulting inequalities t tot

21(T,type A).t tot
21(T,type B)

.t tot
21(T,10 nm,slab).t tot

21(T,2 nm,slab) are explained by the
reasons stated earlier. In brief they can be formulated as fol-
lows: ~i! inclusion of the higher normal modes in the scatter-
ing processes in heterostructures and~ii ! enhancement of the
piezoelectric potential interaction (;d1/2) and weakening of
the deformation potential interaction (;d21/2) with the in-
creasing layer thicknessd. In the structures without piezo-
electric polarization the inequalities are different from the
previous case and are given ast tot

21(T,2nm,slab)
.t tot

21(T,type A).t tot
21(T,type B).t tot

21(T,10 nm,slab).

VII. CONCLUSIONS

We have theoretically investigated confined electron-
confined phonon scattering rates in thin three-layered wurtz-
ite AlN/GaN/AlN heterostructures. The dependence of the
deformation potential and piezoelectric potential scattering
rates on electron energy, temperature, and layer thickness has

FIG. 7. Intersubband electron sattering rate for SA and AS normal modes as
a function of the electron energy in the type B heterostructure at the tem-
perature of 77 K. Solid lines correspond to SA modes while dashed lines
correspond to AS modes. Panel~a! shows transitions from the excited to the
ground state: 2→1; while panel~b! shows transitions from the ground to the
excited state: 1→2.
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been obtained. It is established that in thin three-layered
wurtzite heterostructures the electrons have stronger cou-
pling to the high-energy phonon modes than in the slabs.
This effect may be useful in design of high-frequency GaN-
based devices when a fast electron relaxation is required. It
has also been observed that in thicker heterostructures the
built-in electric field enhances electron interaction with AS
phonon modes via deformation potential and with SA pho-
non modes via piezoelectric potential. At the same time, the
total scattering ratetSA

211tAS
21 remains approximately con-

stant with the variation of the built-in electric field. In the
considered heterostructures piezoelectric interaction plays
the main role in the intrasubband scattering while the defor-
mation potential interaction dominates the intersubband scat-
tering. The results obtained for confined electron-confined
phonon interaction in wurtzite AlN/GaN/AlN thin hetero-
structures extend the concept of phonon engineering and can
be used for optimization of GaN-based electronic and spin-
tronic devices.
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ing rate as a function of the electron energy in the type A heterostructure at
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deformation potential interaction of SA normal modes and dashed lines
correspond to the piezoelectric field interaction of AS normal modes.~b!
Total confined electron-confined phonon scattering rate obtained by integra-
tion over all polarizations for both deformation potential and piezoelectric
field interactions as a function of temperature. The results are shown for two
different slab thicknesses (d52 nm andd510 nm) and two different het-
erostructures: type A~4 nm/2 nm/4 nm! and type B~2 nm/6 nm/2 nm!.
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